Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Microbiol Spectr ; : e0150922, 2022 Nov 03.
Article in English | MEDLINE | ID: covidwho-2269455

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19), which has emerged in the last 2 years. The accessory protein ORF7a has been proposed as an immunomodulating factor that can cause dramatic inflammatory responses, but it is unknown how ORF7a interacts with host cells. We show that ORF7a induces cell apoptosis by recruiting the prosurvival factor BclXL to the endoplasmic reticulum (ER) via the exposed C-terminal residues Lys117 and Lys119. Simultaneously, ORF7a activates ER stress via the PERK-elF2α-CHOP pathway and inhibits the expression of endogenous BclXL, resulting in enhanced cell apoptosis. Ubiquitination of ORF7a interrupts the interaction with BclXL in the ER and weakens the activation of ER stress, which to some extent rescues the cells. Our work demonstrates that SARS-CoV-2 ORF7a hires antiapoptosis protein and aggregates on the ER, resulting in ER stress and apoptosis initiation. On the other hand, ORF7a utilizes the ubiquitin system to impede and escape host elimination, providing a promising potential target for developing strategies for minimizing the COVID-19 pandemic. IMPORTANCE Viruses struggle to reproduce after infecting cells, and the host eliminates infected cells through apoptosis to prevent virus spread. Cells adopt a special ubiquitination code to protect against viral infection, while ORF7a manipulates and exploits the ubiquitin system to eliminate host cells' effect on apoptosis and redirect cellular pathways in favor of virus survival. Our results revealed that SARS-CoV-2-encoded accessory protein ORF7a recruits prosurvival factor BclXL to the ER and activates the cellular ER stress response resulting in the initiation of programmed death to remove virus-infected cells. Ubiquitination of ORF7a blocked the recruitment of BclXL and suppressed the ER stress response, which helps to counteract cell apoptosis and rescue cell fate. These findings help us understand the mechanism of SARS-CoV-2 invasion and contribute to a theoretical foundation for the clinical prevention of COVID-19.

2.
Tianjin Medical Journal ; 50(10):1110-1114, 2022.
Article in Chinese | GIM | ID: covidwho-2168278

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a genome similar to that of the SARSCoV, which has been circulating since 2002 and encodes multiple viral proteins. The accessory protein ORF8 has low sequence homology with SARS-CoV ORF8, and has characteristics of rapid evolution and mutation. It has functions of inhibiting type I interferon and down-regulating the expression of major histocompatibility complex I (MHC I). This paper reviews the structure and function of accessory protein ORF8 and the diagnostic and therapeutic prospects for COVID-19.

3.
Arch Virol ; 2022 Sep 27.
Article in English | MEDLINE | ID: covidwho-2048303

ABSTRACT

SARS-CoV-2 infection, which is the cause of the COVID-19 pandemic, has expanded across various animal hosts, and the virus can be transmitted particularly efficiently in minks. It is still not clear how SARS-CoV-2 is selected and evolves in its hosts, or how mutations affect viral fitness. In this report, sequences of SARS-CoV-2 isolated from human and animal hosts were analyzed, and the binding energy and capacity of the spike protein to bind human ACE2 and the mink receptor were compared. Codon adaptation index (CAI) analysis indicated the optimization of viral codons in some animals such as bats and minks, and a neutrality plot demonstrated that natural selection had a greater influence on some SARS-CoV-2 sequences than mutational pressure. Molecular dynamics simulation results showed that the mutations Y453F and N501T in mink SARS-CoV-2 could enhance the binding of the viral spike to the mink receptor, indicating the involvement of these mutations in natural selection and viral fitness. Receptor binding analysis revealed that the mink SARS-CoV-2 spike interacted more strongly with the mink receptor than the human receptor. Tracking the variations and codon bias of SARS-CoV-2 is helpful for understanding the fitness of the virus in virus transmission, pathogenesis, and immune evasion.

4.
PLoS Pathog ; 17(12): e1010113, 2021 12.
Article in English | MEDLINE | ID: covidwho-1553552

ABSTRACT

Emerging coronaviruses (CoVs) pose a severe threat to human and animal health worldwide. To identify host factors required for CoV infection, we used α-CoV transmissible gastroenteritis virus (TGEV) as a model for genome-scale CRISPR knockout (KO) screening. Transmembrane protein 41B (TMEM41B) was found to be a bona fide host factor involved in infection by CoV and three additional virus families. We found that TMEM41B is critical for the internalization and early-stage replication of TGEV. Notably, our results also showed that cells lacking TMEM41B are unable to form the double-membrane vesicles necessary for TGEV replication, indicating that TMEM41B contributes to the formation of CoV replication organelles. Lastly, our data from a mouse infection model showed that the KO of this factor can strongly inhibit viral infection and delay the progression of a CoV disease. Our study revealed that targeting TMEM41B is a highly promising approach for the development of broad-spectrum anti-viral therapeutics.


Subject(s)
CRISPR-Cas Systems , Gastroenteritis, Transmissible, of Swine/virology , Host-Pathogen Interactions , Membrane Proteins/physiology , Organelles/virology , Transmissible gastroenteritis virus/physiology , Virus Replication , Animals , Gastroenteritis, Transmissible, of Swine/genetics , Gastroenteritis, Transmissible, of Swine/transmission , Membrane Proteins/antagonists & inhibitors , Mice , Mice, Inbred C57BL , Swine
5.
J Virol ; 2021 Jan 07.
Article in English | MEDLINE | ID: covidwho-1376458

ABSTRACT

Coronaviruses that infect humans belong to the Alpha-coronavirus (including HCoV-229E) and Beta-coronavirus (including SARS-CoV and SARS-CoV-2) genera. In particular, SARS-CoV-2 is currently a major threat to public health worldwide. The spike (S) homotrimers bind to their receptors via the receptor-binding domain (RBD), which is a major target to block viral entry. In this study, we selected Alpha-coronavirus (HCoV-229E) and Beta-coronavirus (SARS-CoV and SARS-CoV-2) as models. Their RBDs exist two different conformational states (lying or standing) in the prefusion S-trimer structure. Then, the differences in the immune responses to RBDs from these coronaviruses were analyzed structurally and immunologically. Our results showed that more RBD-specific antibodies (antibody titers: 1.28×105; 2.75×105) were induced by the S-trimer with the RBD in the "standing" state (SARS-CoV and SARS-CoV-2) than the S-trimer with the RBD in the "lying" state (HCoV-229E, antibody titers: <500), and more S-trimer-specific antibodies were induced by the RBD in the SARS-CoV and SARS-CoV-2 (antibody titers: 6.72×105; 5×105) than HCoV-229E (antibody titers:1.125×103). Besides, we found that the ability of the HCoV-229E RBD to induce neutralizing antibodies was lower than S-trimer, and the intact and stable S1 subunit was essential for producing efficient neutralizing antibodies against HCoV-229E. Importantly, our results reveal different vaccine strategies for coronaviruses, and S-trimer is better than RBD as a target for vaccine development in Alpha-coronavirus Our findings will provide important implications for future development of coronavirus vaccines.Importance Outbreak of coronaviruses, especially SARS-CoV-2, poses a serious threat to global public health. Development of vaccines to prevent the coronaviruses that can infect humans has always been a top priority. Coronavirus spike (S) protein is considered as a major target for vaccine development. Currently, structural studies have shown that Alpha-coronavirus (HCoV-229E) and Beta-coronavirus (SARS-CoV and SARS-CoV-2) RBDs are in "lying" and "standing" states in the prefusion S-trimer structure. Here, we evaluated the ability of S-trimer and RBD to induce neutralizing antibodies among these coronaviruses. Our results showed that the S-trimer and RBD are both candidates for subunit vaccines in Beta-coronavirus (SARS-CoV and SARS-CoV-2) with a RBD "standing" state. However, for Alpha-coronavirus (HCoV-229E) with a RBD "lying" state, the S-trimer may be more suitable for subunit vaccines than the RBD. Our results will provide novel ideas for the development of vaccines targeting S protein in the future.

6.
PLoS One ; 15(12): e0244128, 2020.
Article in English | MEDLINE | ID: covidwho-1004460

ABSTRACT

PURPOSE: To evaluate the efficacy and safety of methylprednisolone in treating the coronavirus disease 2019 (COVID-19) patients. METHODS: A retrospective cohort study was conducted, and all COVID-19 patients were recruited who were admitted to the Yichang Third People's Hospital from February 1st to March 31st, 2020. One-to-one propensity score matching (PSM) was used for minimizing confounding effects. The primary outcome was hospital mortality, with the secondary outcomes being the time needed for a positive SARS-CoV-2 nucleic acid test to turn negative and the length of hospital stay. RESULTS: Totaling 367 patients with COVID-19 hospitalized at the Yichang Third People's Hospital were identified, of whom 276 were mild or stable COVID-19, and 67 were serious or critically ill. Among them, 255 patients were treated using methylprednisolone, and 188 did not receive any corticosteroid-related treatment. After PSM, no statistically significant difference was found in the baseline characteristics between the two groups. Regarding the outcomes, there also were no statistically significant difference between the two groups. Patients without the use of methylprednisolone were more quickly to obtain negative results of their nasopharyngeal swab tests of SARS-CoV-2 nucleic acid after treatment, compared to those receiving methylprednisolone. CONCLUSION: Methylprednisolone could not improve the prognosis of patients with COVID-19, and the efficacy and safety of the use of methylprednisolone in patients with COVID-19 still remain uncertain, thus the use of corticosteroids clinically in patients with COVID-19 should be with cautions.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Hospital Mortality , Length of Stay , Methylprednisolone/administration & dosage , SARS-CoV-2 , Adult , Aged , COVID-19/diagnosis , COVID-19/mortality , Female , Humans , Male , Middle Aged , Prognosis , Propensity Score , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL